1000(1+x^2)=1000+440

Simple and best practice solution for 1000(1+x^2)=1000+440 equation. Check how easy it is, and learn it for the future. Our solution is simple, and easy to understand, so don`t hesitate to use it as a solution of your homework.

If it's not what You are looking for type in the equation solver your own equation and let us solve it.

Solution for 1000(1+x^2)=1000+440 equation:



1000(1+x^2)=1000+440
We move all terms to the left:
1000(1+x^2)-(1000+440)=0
We add all the numbers together, and all the variables
1000(1+x^2)-1440=0
We multiply parentheses
1000x^2+1000-1440=0
We add all the numbers together, and all the variables
1000x^2-440=0
a = 1000; b = 0; c = -440;
Δ = b2-4ac
Δ = 02-4·1000·(-440)
Δ = 1760000
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}$
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}$

The end solution:
$\sqrt{\Delta}=\sqrt{1760000}=\sqrt{160000*11}=\sqrt{160000}*\sqrt{11}=400\sqrt{11}$
$x_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(0)-400\sqrt{11}}{2*1000}=\frac{0-400\sqrt{11}}{2000} =-\frac{400\sqrt{11}}{2000} =-\frac{\sqrt{11}}{5} $
$x_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(0)+400\sqrt{11}}{2*1000}=\frac{0+400\sqrt{11}}{2000} =\frac{400\sqrt{11}}{2000} =\frac{\sqrt{11}}{5} $

See similar equations:

| 18+19x=-8+15x | | m^2-70=3m | | 48=4x-4(4x+12) | | 8z^2-9z+3=0 | | |7-4x|=5 | | 5(-3+4x)=4(2x+4)+12x | | x-10=20.67 | | x-10=$20.67 | | 1/3(x2-7)=14 | | x-$10=$20.67 | | 5.1a+13=53.8 | | 2h^-h+15=0 | | 4x+8=5x+23 | | 2x+1=2(x)+1 | | (x+7)^2=10 | | 7x-3=80 | | 64+u=121 | | -3m+2=4m+9 | | (5x)^2+(4x)^2=19^2 | | 5x-7(6x-2)=236 | | -30-3x=38=x | | -7x-3(-6x+22)=22 | | 3x-6/2=4.5 | | 7x+2(7x-20)=170 | | -2x-8=28x-6(5x-8) | | 3x+11/2=38 | | -2r-8=28r-6(5r-8) | | 4x-1/6+2=3x-1/8 | | 30x+77=400 | | 77x+30=400 | | -3(p-1)+5p=18+1 | | 135=5x+3(2x+12) |

Equations solver categories